Mechanical considerations for designing neural implants

Applications in Neural Microsystems Lecture 10

Source of interactions between device and tissue

- Surgical procedure: insertion (penetration)
- Repositioning of the device inside the tissue
- Oscillatory motions (Micromotions) •

Significance

Electrode Tissue Neuron severing Vessel rupture Meninges Bone Brain

Trauma of insertion

- Induces neuronal loss
- Contributes to structural failures of the device •

Results of tissue trauma

Implanted device elicit foreign body response (encapsulation)

Marin, 2010

Device perspectives

Device properties influencing mechanical response

- Sensor geometry (structural design)
- Chemical and physical nature of boundary interfaces
- Bulk properties (Flexibility, softness, density)
- Packaging, interconnections

Other important variables:

- Implantation methods (device sterilization, insertion speed)
- Variability in biological properties of the target tissue

Mechanical loads during tissue-device interaction

Definitions in solid mechanics

Stress

(compressive, tensile)

Strain

$$\sigma = \frac{F}{A} \qquad [N/m^2]$$

$$\varepsilon = \frac{l - l_0}{l_0} \qquad [-]$$

-

Definitions in solid mechanics

Silicon as mechanical carrier of neural probes is particularly sensitive to the direction of load

In crystalline structures:

$oldsymbol{E}$ is anisotropic

Mechanical loads during insertion

Fracture - thin film or substrate

Neutral axis goes through the center of mass. Neutral axis is less prone to the change in bending/buckling force.

Second moment of inertia for various cantiveler cross-sections in MEMS

Functional components integrated in the substrate of neural probes (e.g. microfluidics, waveguides etc) alters I.

Thin probes are prone to deflection without external forces

- mismatch in CTE (coefficient of thermal expansion)

Example: SiO₂ is deposited on a 4" Si wafer at 700 °C ($\alpha_{Si}=3*10^{-6} 1/K$, $\alpha_{SiO2}=0.6*10^{-6} 1/K$) $\Delta L= \alpha * L0 * \Delta T$ $\Delta L_{Si} < \Delta L_{SiO2}$ Compressive stress is built up!

Thermal strain: $\varepsilon_{\text{therm}} = \Delta T * \Delta \alpha \sim 0.2mm$

Stress management is an essential part of technology design!

Residual stress depends on deposition parameters

Examples

What parameters determines instrinsic stress?

Process temperature, precursor (gas) ratio, annealing profile, initial CTE of materials

Effects of intrinsic stress on cantilever deflection

(1) No stress gradient along z-direction

(2) Higher tensile stress near top surface of cantilever before release from substarte

(3) Higher compressive stress near top surface of cantilever before release from substrate

How to compensate thin film stress?

How to measure residual stress?

Radius of Curvature of warpage

$$r = \frac{E_s \times t_s^2}{(1 - v)_s \times 6 \times \sigma_f \times t_f}$$

"Stoney Equation"

t s = substrate thickness

 t_{f} = film thickness

- E = Young's modulus of substrate
- n = Poisson's ratio of substrate

Residual stress typical of a deposition step can be derived from wafer (substrate) curvature

Optimal location of thin film elements to reduce failure due to bending stress

Buckling

Unlike bending, its a failure mode! (structural damage is induced if occurs)

$$P_{CR} = \frac{\pi^2 EI}{L^2}$$

Euler's Equation

- PCR = critical or maximum axial load on the column just before it begins to buckle.
- E = modulus of elasticity for the material
- I = least moment of inertia of the column's cross-section
- L = unsupported length of the column, whose ends are pinned

Copyright © 2005 Pearson Prentice Hall, Inc.

Fracture

- External axial forces above the critical buckling force may lead to fracture.
- The overall stress during buckling leads to fracture when approaching the ultimate tensile strength

Ultimate tensile strength: maximum stress that a material can withstand while being stretched or pulled before breaking. ()

Silicon is hard, but brittle. (7000 MPa).

Thin films have usually lower tensile strength. (Signal quality may predict device failure)

Application perspective

Device insertion (biomechanics)

Trade-off between two fundamental aims:

- To avoid device failure
- To avoid tissue damage

Major biological barriers:

- Meninges (dura and pia mater)
- Gray and white matter

Rupture of this barrier iniate foreign body response (detailed in upcoming lecture)

Haines, 1991

Mechanical properties of meninges and tissue

Physical description by a hyperelastic model: strainstrain curve is non-linear

	Mechanical properties		
Biological tissues	Young modulus (MPa)	Tensile strength (MPa)	
Cranial dura	60	2.91	
Spinal dura	100	2.49	
Retina	0.02	-	
Brain tissue	0.01	-	
Bone	5,000-21,000	150	

Maikos, 2008

Sharp, 2009

Penetration loads

- Significance: device should withstand penetration forces
- Possible loads: bending and buckling
- F_{penetration} > F_{crit} leads to fracture!

Characteristic parts of force-distance curves:

- Penetration force (insertion)
- Dimpling (insertion)
- Rest force (tissue relaxation)
- Retraction force (explantation)

How to measure?

Neural probes mounted on a force gauge

Force [mN]

Significance of dimpling

Dimpling: Indentation of superficial tissue layer before tissue rupture Identification on force-distance curve: at maximum load **Reason to minimize:** may lead to TBI (traumatic brain injury)

TBI may lead to secondary degeneration

BI may lead to block in cerebral blood flow

Sensor geometry (structural design)

Probe geometry

Significance:

All forces are coupled to interfacial area, which in general should be reduced.

Relevant design parameters:

Length: depends on implantation target

- Width: depends on integrated functionalities
- Thickness: depends subtrate thickness, post-processing technologies
- Tip: depends on both layout and technology
- Symmetry: depends on technology (wet or dry chemical etching)

Investigation of interfacial parameters during penetration

Objectives	Shaft length (mm)	Shaft width x thickness (μm <i>x</i> μm)	Tip angle (°)	Insertions per data points	Insertion speed (mm/min)
Force vs. Speed; Dimpling vs. Speed	30	200x200	30	8	1.2, 3, 5.2, 7.5, 10.5
Force vs. Cross-sections Dimpling vs. Cross-section	30	200x200, 200x400, 400x200, 400x400	30	10	3
Force vs. Tip angle Dimpling vs. Tip angle	7	400x100	30, 60, 90	4	3
Force vs. Sharpening	7	500x00	45	5	3
Force vs. Age; Dimpling vs. Age	30	200x200, 400x400	30	4	3

Fekete, 2015

Effect of geometry on insertion

Shank thickness x width (μm <i>x</i> μm)	Penetration force (mN)	Dimpling (mm)
200 x 200	58 ± 8	1.06 ± 0.2
200 x 400	70 ± 10	1.19 ± 0.21
400 x 200	98 ± 11	1.56 ± 0.12
400 x 400	93 ± 12	1.70 ± 0.26

Trends are in agreement with literature on retracted dura: Davis, 2004; Jensen, 2006; Sharp, 2009; Andrei, 2012;

Tip angle (°)	Penetration force (mN)	Dimpling (mm)
30	27 ± 3	0.78 ± 0.08
60	72 ± 22	0.93 ± 0.11
90	112 ± 28	1.03 ± 0.08

First experimental data in the case of intact dura mater

Fekete, 2015

Improved technologies

Sharpening of the probe tip with multiple-step wet chemical etching (Grand, 2010)

Pattern definition

10. CVD SiO_x (f) 11. Photolithography II. (f) 12. SiO_x etch (f)

8. TiO,/Pt sputtering (f)

1. Thermal SiO₂(f) 2. Thermal SiO₃(b)

3. LPCVD SiN_x(f, b) 4. CVD SiO_x (f, b)

Al evaporation (f)
Photolithography I. (f)

7. Al etch (f)

9. Lift off (f)

- 13. Photolitography III. (b) 14. SiO_x etch (b) 15. SiN_x etch (f, b)
- 16. Photolithography IV. (b) 17. SiO₂ etch (b)

18. LPCVD SiN, (f)

Shape definition

Grand, 2010

Etching anisotropy in crystalline materials

Orientation of patterns determines the etch rate!

Vazsonyi, 2003

Vázsonyi, 2005

Underetching for Si with KOH

Performance of sharpened probes

Surface quality after deep reactive ion etching (DRIE) improved by subsequent wet etching in a mixture of NaOH:NaOCI

Fekete, 2015

Samples	Penetration force (mN)
A0	49 ±13
A1	20 ± 6
A2	11 ± 3
A _{ref}	5 ± 1.5

A0: DRIE probe with intact dura A_{ref} : DRIE probe with retracted dura

Insertion forces can be subtantially lowered even with dura mater on top.

Chemical and physical nature of boundary interfaces

Interfacial load (shear stress)

Depends on the characteristic roughness of device surfaces. Induced by insertion, repositioning and micromotions in tissue.

Concepts for repositioning recording depth

Microdrives

Advantage: single units can be recorded at higher yield in spite of the ongoing glial encapsulation

Disadvantage: induces shear stress during vertical positioning along the probe track

Márton, 2016

Micromotions

Displacements caused brain movement modulated by physiological activity

Cortical surface drift

Effects of vasculature and pulmonary activity

Packaging, interconnections

How to mitigate mechanical coupling between microdevice and connectors?

i) ii) iii) B Α \mathbf{C} Artificial bone Artificial bone Skull Skull Flexible Dura Mate cable Electrode Electrode Cortex Cortex MEA 5mm flexible ribbon cable (5 µm PI, 300 nm Au, 5 µm PI) Shander, 2018 **Concept:** Formation a hybrid stiff-flexible device configuration silicon-stiffened neural probe (5 µm PI, 300 nm Au, 5 µm PI, 20 µm Si)

> SMD connector part (5 μm PI, 3 μm Au, 5 μm PI, 500 nm SiO₂, SOI-wafer)

Lecomte, 2017

Reason for lateral displacement during insertion

Integrated MEMS components

Son, 2015

3D config. or assembly methods

Tip symmetry

Fekete, 2013

Grand, 2010

Interface stress

Reason: rough device surfaces (typically on sidewalls)

Approaches to mitigate:

- Parylene C coating (Andrei, 2012)
- Hydrogel coating (Spencer, 2017)
- PVA coating (Sridharan, 2015)

Andrei, 2012

Dissolvable coatings vs interfacial stress

Bulk properties of the sensor

Lecomte, 2017

Device substrates are usually much stiffer than tissue.

Responsive neural interfaces

Device that alters their mechanical properties at physiological conditions (pH, temperature, liquid) may mitigate micromotion induced damage

Cellulose nanocomposites

Shape memory polymers

Swelling

Phenomenon: increase in device volume if exposed to liquids (water)

To be considered for implants made of polymers, hydrogels, composite fibers!

swellable substance

(drv)

Advantage: reduces density mismatch between device and tissue

Disadvantage: increase strain in swollen states

- may induce injuries in blood capillaries
- may lead to thin film cracks

Dunning, 2014

Surgical conditions

Ways to mitigate insertion forces?

Fekete, 2015

Andrei, 2012

- Low speeds results in low insertion forces, but have no effect on dimpling. Dimpling is influenced by interfacial area only.
- Increase in penetration force between cases of retracted and intact dura: one order of magnitude (!)

Implantation time window

- Undefinite for stiff implants
- To be carefully considered for responsive materials (e.g. shape memory polymers, cellulose nanocomposite)
- Shortest for chemoresponsive materials, longer for thermoresponsive materials >> induces elevated penetration forces due to large insertion speed

Effects on neural recording

Fiáth, 2019

Higher signal-to-noise ratio

More clustered units

No effect on spike amplitude

Low insertion speed provides high yield in neural recordings

Effect of tissue conditions

Fekete, 2015

Explanation: dura is getting thicker and less flexible by age

Similar results: Van Noort, 1981 (human dura)

Questions

- 1. List relevant device properties that have influence on device-tissue interactions.
- 2. List the main sources of mechanical interactions between device and tissue.
- 3. How does an integrated bulk component change response of needle-like implants to bending and buckling loads?
- 4. What is residual stress in MEMS devices and why it is important?
- 5. What is the relationship between buckling and fracture? What is the critical buckling force of a needle?
- 6. What is tissue dimpling during device penetration, and why it is important to be reduced?
- 7. What is the effect of device geometry on insertion forces and dimpling measured during implantation ?
- 8. What is tethered and untethered probe configuration?
- 9. Describe micromotions inside the brain. What kind of forces are induced around the implants due to micromotions?
- 10. What is the relationship between insertion speed and penetration forces?
- 11. Describe the relevance of responsive neural implants regarding their mechanical properties.