Drug delivery neural probes

Applications in Neural Microsystems Lecture 9

Zoltan Fekete

Outline

- 1. Goal of local drug delivery
- 2. Active drug delivery principles

A. Convection enhanced

B. Electrophoresis

- 3. Technology of passive devices
- 4. Integrated active solutions
- 5. Exampes of microelectrodes with integrated fluidics

Applications

Microneedles:

- Transdermal injection of drugs
- Microdialysis tests

Microelectrodes:

- Administration of pharmacuticals through the blood-brain barrier (therapy, diagnostics)
- Injection of anti-inflammatory agents during implantation
- Injection of anatomic tracers
- Release of neurotransmitters to investigate neurodegenrative diseases

Basic configurations:

Microfluidics + *MEMS* = *Multipurpose implants*

Transdermal delivery

Prausnitz, 2009

Specific delivery technologies:

- Passive
- Chemical enhancer

Applications already approved: Dementia (Rivastigmine, 2007) Rotigotine (Parkinson's disease, 2006) Selegiline (Depression, 2006)

Under clinical development: Influenza vaccine Sufentanil (chronic pain) Parathyroid hormone (Osteoporosis)

- Iontophoresis
- Heat enhancement

Drug delivery through the blood brain barrier (BBB)

BBB: separates circulating blood from extracellular fluid in the CNS

- Nearly all neurotheraputics and small molecule drugs are excluded
- Nanoparticles embedded in liposomes & peptides are able to cross BBB
- Alternative diagnostics:
- Disruption of BBB by local injection of drugs

Junction between Endothelial cells

Cross section of blood vessel

Longitudinal section of blood vessel

Strategies to administer drugs in the brain

- Convection enhanced delivery
- Iontophoresis aided delivery
- Polymer coatings with tunable drug release

Usually pressure based solutions are available on the market.

Convection enhanced delivery (CED)

Conventional solutions:

- Bulky (250-500 micron in diameter)

- Rigid (E ~200GPa)

Fundamentals in hydrodynamics

Governing equation (Navier-Stokes):

$$\rho \frac{\delta \boldsymbol{u}}{\delta t} = -\boldsymbol{\nabla} \boldsymbol{P} + \boldsymbol{\mu} \boldsymbol{\nabla}^2 \boldsymbol{u} + \mathbf{g}$$

Driving forces:

pressure gradient, viscous forces, gravity

Flow at the microscale in CED

Typical circuit models in microfluidics

Series:
$$R_{total} = R_1 + R_2 + ... + R_N$$

Parallel: $\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2} + + \frac{1}{R_N}$

P - pressure, Q - flow rate, $R_H - hydraulic$ resistance

Hydraulic resistance

- Cross-section dominantly influences
- Typically inherently limited by production technology used

Viscosity

Water viscosity

Shear rate: change of velocity at which one layer of fluid passes over an adjacent layer

Iontophoretic drug delivery (IDD)

- Administration of solutions containing charged particles
- Governing equations: Faraday's law

N_e – mol number of electrons which pass through the external circuit per second,

- F Faraday constant (96487 C/mol)
- Q drug delivery rate
- M_w molecular weight

Integrated solutions (silicon)

Small volume of fluids

Large volume of fluids 14

Integrated solutions (polymers)

Silicon electrodes

Flexible microfluidic probes on polymers

Out-of-plane Si structures with wafer bonding

Hollow microelectrodes in SU-8 double layer

Miniaturization of complete systems

Shin, 2015

"Micro meets macro": overall device dimensions are typically limited by external interfaces (tubing, connectors, pumps etc)

Integration of passive components (mixing)

Shin, 2015

Integration of passive components (mixing)

Compact pumping solutions (thermal actuation)

Fong, 2015

Requirements of pumping solutions

- Low power consumption
- Long term stability of drug release
- Fast response time
- Leak-free and clog free operation
- Small device footprint
- Multichannel actuation (administration of multiple drug components/reagents)

Multipurpose silicon drug delivery probes

Table 3

Realized silicon microelectrodes and concepts providing simultaneous recording and drug delivery functionalities.

Reference	Basic fabrication process	Design			Bench-top tests			Overall performance			
		Fluidic outlet/ shaft	Probe length (mm)	Configuration	Actuation	Fluidic	Electrical	Mechanical	Flow rate (µL/min)	Pressure (kPa)	Test on simultaneous functions
[68]	Wet etching	1	6	Single-shaft	Ext. spyringe pump	Yes	Yes	-	10-90	2.5-300	-
[69]	Wet etching + fused silica catheter	1	-	Single-shaft	Ext. syringe pump	Yes	-	-	0.5–1	-	Acute in vivo
[5]	Dry etching + wafer bonding	1–3	6-8	Dual-shaft	Ext. syringe pump	Yes	Yes	Yes	0.75-3.75	0.5-2.5	-
[55]	Dry etching + Parylene sealing	2	2.8	3D array	Ext. syringe pump	Yes	Yes	-	2-10	2.7–16	-
[33]	Dry etching + wafer bonding	1–2	8	3D array	Ext. syringe pump	Yes	-	-	0.75-3.75	0.5-2.5	-
[20]	Dry etching + wafer bonding	1	8	Dual-shaft	Thermal actuator	-	-	-	0.75-3.75	0.5-2.5	Chronic in vivo
[21]	Dry etching + poly-Si sealing	1–2	15-70	Single-shaft	Ext. syringe pump	Yes	Yes	-	0.1-1.6	40-200	Acute in vivo

Fekete, 2015, Sensors & Actuators B:Chemical

"The more complicated, the more likely users will be not able to use"

Multipurpose polymer drug delivery electrodes

Table 4

Flexible neural interfaces with integrated microfluidic functionality.

Auth	ors Interface type	Substrate materials	Channel dimensions (μm x μm)	Flow rate (µL/min)	Release rate (nmol/days)	In vivo animal model	In vitro study	Test duration	Extra features
[103 [107 [100 [10]	penetrating penetrating penetrating penetrating	Polyimide Parylene C Parylene C Polyimide/SU-8	up to 20× 200 up to 10× 200 11.4×50 50×45	up to 1200 N/A 0.09 240	- - -	- rat - mouse	yes - yes -	- acute 27 days acute	electrical recording electrical recording – electrical recording, waveguidesfor optogenetics
[44] [8] [20] [101	surface penetrating surface surface	Polyimide/PDMS SU-8 PDMS PDMS/Parylene/PET	50 × 200 40 × 20 50 × 100 10 × 10	- 40 120-360 5.2	0.1–0.5 - - -	– rat rat/mouse mouse	yes - -	– acute 6 weeks 6 weeks	electrical recording electrical recording electrical stimulation wireless, µLEDs for optogenetics

Fekete, 2017, Sensors & Actuators B:Chemical

"Thickness requirements limits the range of materials"

Polymer coatings for drug delivery

Solvent activated

(swelling- or osmotically-controlled devices)

• Chemically controlled

(biodegradable polymers)

- Externally-triggered systems (Temperature, pH)
- Electrically activated (conductive polymers)

Case study 1

Fabrication & characterization of silicon microelectrode for CED

Concept & design How to integrated drug delivery channels?

Probe designs	MFA	DBS Kit	Neuro Nexus	Neuro Probe
Length [mm]	70	> 100	70	8
Diameter [µm]	200 400	1270	Аррх 150	150- 250
Nr of the Pt electrical sites	4 - 16	4	32	4
Fluidic channel	+	-	-	+

Fabrication (Monolithic integration of fluidic channel in neural probes)

I. Fluidic channelII. Electrical wiringIII. Probe body

Process steps included:

- 4 photolithography steps
- Lift-off (platinum wiring & sites)
- Low-pressure chemical vapour deposition of dielectrics
- Deep reactive ion etching of channel & device contour

Dry etching - fundamentals

Why dry etching?

Dry etching advantages

- Eliminates handling of dangerous acids and solvents
- Uses small amounts of chemicals
- Isotropic or anisotropic/vertical etch profiles
- Directional etching without using the crystal orientation of Si
- Faithful pattern transfer into underlying layers (little feature size loss)
- High resolution and cleanliness
- Less undercutting
- Better process control

Dry etching disadvantages:

- Some gases are quite toxic and corrosive.
- Re-deposition of non-volatile compound on wafers.
- Expensive equipment (\$200-500K for R&D, few million for industrial tools).

Types of dry etching:

- Non-plasma based uses spontaneous reaction of appropriate reactive gas mixture.
- Plasma based uses radio frequency (RF) power to drive chemical reaction.

Bosch process (used to define channel depth and device contour)

Versatility of DRIE process

Two materials, four etching procedure, one machine

	SiO ₂ etch	Deep Si etch—Bosch process (passivation/etch)	Highly anisotropic SiO ₂ etch	Isotropic Si etch
Process step	Step 3	Step 4	Step 7	Step 8
Pressure (mTorr)	8	30/40	30	40
ICP power (W)	2,000	-/750	_	750
LF power (350 kHz)	_	1/8 W	_	8 W
RF power (W)	100	-	200	
C ₄ F ₈ flow rate (sccm)	36	100/-	_	
O2 flow rate (sccm)	4	-	_	
SF ₆ flow rate (sccm)	_	-/150	_	150
Ar flow rate (sccm)	_	_	20	
CHF ₃ flow rate (sccm)	-	-	30	
Time	_	4/9 s (cycle time)	5 min	5 min

Original process flow

Improved process flow

Fekete et al, 2012

Improved version: probe surface can be exploited to add further functional components

Step coverage

• Tailors the quality of forming buried/embedded components in the substrate

Uniform Non-uniform Aspect ratio = x / y

Uniform: typically CVD; Non-uniform: typically PVD

- Chemical vapour deposition(CVD): PECVD, LPCVD, ALD
- Physical vapour deposition (PVD): evaporation, sputtering

Modelling of step coverage (evaporation)

37

Fabrication – Fluidic channel

Poly-crystalline silicon (polySi) is deposited inLPCVD chamber to fill up the trench

2

Si

MD = 29 mm

Before filled by LPCVD polySi

 Stage at Z = 33.028 mm
 Stage at T = 0.0*
 Signal A = InLe

 Stage at M = 4.693 mm
 Titt Angle = 0.0*
 Signal B = SE2

 Innace Pixel Size = 35.65 nm Titt Corrn. = Off
 Scan Rot = Off

HT = 5.00 kV

WD = 10.0 mm

Poly-Si

After filled by LPCVD polySi Mag = 3.50 K X mage Pixel Size = 101.9 nm HT = 5.00 KV WD = 1.6 mm Stage at T = 0.0 * Stage at Z = Tit Angle = 54.0 * Stage at M = Tit Corrn. = Off Aperture Size •

17 µm

Effect of dry etching fabrication parameters on channel location and profile

Investigated relationships:

- Trench width vs. Deep Si etching
- Aspect ratio vs Si etch in SF₆ plasma
- Trench width vs profile assymetry

Fekete et al., 2013

Chips ready for packaging

Optical inspections

Microchannels

Characterization – Electrical properties

Results of impedance spectroscopy

Final impedance values at 1 kHz: 517 \pm 43 k Ω .

Deep-brain probe after packaging

100 um

Hydrodynamic characterization (chip-scale)

Setup: Pumping DI water through the integrated drug delivery channel of a single chip.

Pressure vs flow rate

Hydrodynamic resistance is increasing with increasing fluidic channel length

Flow rate is in the range 0.5 - 1.5 $\mu l/min_{45}$

Fracture mechanics

a400x400 ♦400x200 8,00 4,00 △200x200 O200x400 2,00 Fracture force [N] 1,00 0,50 0,25 0,13 ۶ 0.06 0,03 ************ 0,02 0,01 0 2 6 8 4 Probe length [cm]

Role of second moment of inertia! Lower in case of a hollow structure than for solid structure of the same cross-section

Constraints:

Buckling analysis

Critical buckling force in Euler beam theory:

$$F_b = \frac{\pi^2 \cdot E \cdot I}{4 \cdot L^2}$$

I - second moment of area (depends on cross-section)

In vivo testing – External fluidic interface

tetrode (#4)

2 buried channels

• Number of integrated fluidic components:

http://www.precidip.com Preci Dip PCB socket connector

48

In vivo validation

Acute animal experiment demonstrated simultaneous drug injection and neural signal recording (LFP, MUA, SUA) Evoked activity after *Resting state before* injection injection ML: 3.2 mm Cortex man man man mannannum Cortex mannammana mannahanna Manuman manumment +256 µV 1 s 0.5-100 Hz A Hippocampus 0.5-100 Hz Thalamus Thalamus +512 µV[_]s 0.5-100 Hz +512 µV 1 s 0.5-100 Hz C 0.5-100 Hz F +512 µV 1 s D

Evoked potentials by administration of biccuculine through the integrated channels

Pongrácz, 2013

Case study 2

Characterization of hollow silicon microelectrode for iontophoretic administration of pathway tracers

Motivation

- Bridging the gap between brain structure and function
- Mapping connectome in animal studies

Human Connectome Project

S. W. Oh et al., Nature 508, pp. 207-214, 2014.

Goal

<u>Validation</u> of a combined tool for in vivo electrophysiology and neuronal labeling through iontophoretic tracer injection

Connectome

Anatomical connectivity vs functional connectivity

Connectome can be "rewired"

neuroplasticity

Neuronal labeling

Iontophoretic tracer injection

Iontophoretic drug delivery

• Governing equations: Faraday's law

 N_{e}

Labeling protocol

Procedure:

- 1. Channel filling with BDA.
- 2. Implantation
- 3. Pt electrode negatively biased Silver electrode positively biased
- 4. Current injection (15 mins)
- 5. Electrophisiology (where applicable)
- 6. Histology

Targeted region: somatosensory cortex
Substance: 10% mixture of high & low MW BDA dissolved in 0.01M PBS (pH 7.4)
Survival time: 7 days
Histology: standard ABC protocol to visualize BDA in coronal vibratome sections

Additional control experiment: without any voltage bias

Challenge: probe dimension should be reduced to increase survivial rate of labelled neurons

Change in probe technology for limited tissue damage?

Thinning the probe with etching-before-grinding technology

Grinding is compatible with the fab process?

Labeled neuronal cells

Effective cross section of labeling: ~ 200-300 micron

Control experiment

a. Labeled neuronal cell bodies ($I_{inj} = 4 \mu A$, ON/OFF cycle = 7 s /7 s)

b. Control experiment(without injection current)

Conclusion: diffusion through pre-loaded channels compared to IDD is negligible

Connectome labeling

Iontophoretic injection (I = 4 μ A, ON/OFF cycle = 5/5 s) & Electrophysiology

Green arrow: ipsilateral, red arrow: contralateral, blue arrow: thalamic connections.

Connectome labeling

Electrophysiology

In vivo extracellular recording after tracer injection in anaesthetized rats

Neuronal activity recorded with a linear MEA after injection

Detected unit activities at the location of iontophoresis (A) and 800 μ m above (B).

Questions

- 1. List five medical applications of microscale drug delivery.
- 2. What parameters determines the flow rate in the case of iontophoretic injection of charged particles?
- 3. What parameters determine hydrodynamic resistance in a microchannel?
- 4. Draw the schematic process flow of surface-, bulk micromachining approaches to fabricate microfluidic channels.
- 5. What is the relationship between pressure and flow rate in a laminar flow?
- 6. What dimensional and material parameters determine the buckling force of a hollow needle?
- 7. How does the steepness of pressure flow rate curve changes if the length of the microchannel increased?
- 8. What is the operation principle of thermally actuated integrated micropump?
- 9. What is the effect of elastic components on flow profile?